If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+34x-1960=0
a = 4; b = 34; c = -1960;
Δ = b2-4ac
Δ = 342-4·4·(-1960)
Δ = 32516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32516}=\sqrt{4*8129}=\sqrt{4}*\sqrt{8129}=2\sqrt{8129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{8129}}{2*4}=\frac{-34-2\sqrt{8129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{8129}}{2*4}=\frac{-34+2\sqrt{8129}}{8} $
| 2x^2+17x-980=0 | | 2x^2+17x+880=0 | | 2x^2+17x-880=0 | | 3x+1-x+7=0 | | 4m-6+2m=+5 | | 24=-7v+5(v+2) | | 5x-3=3(x | | 7p+7+9p=-21 | | -6(x+2)-15=10+5 | | 5a=18 | | -20+18=m-4 | | 5x-3=(x+7)+3x4 | | 3x-2=4(x-1)+2x= | | |3x−5|+6=25 | | 5/7t+14=-11 | | 2x^2+50x-7900=0 | | 7^-8y=9 | | n–27.3=15.9 | | 5x^2+5=55 | | 3x+10=5x-5. | | 13w+19w-6+2=-4w+2-6 | | 1+x/2=1/6-x/3 | | (k-1)^2=81 | | 10x-12/2+7=4 | | 0.5/x=94 | | x(5x–8)=–2(5x–8) | | 28t+18=162 | | 16x+8=54 | | 15x+14=298 | | X²-14=5x | | t/15=20-t | | (X^4)+(8x^2)=33 |